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A statistical model is developed to link recruitment of eastern Bering Sea walleye pollock (Theragra chalcogramma) to variability in late
summer sea surface temperatures and to the biomass of major predators. The model is based on recent advances in the understanding
of pollock recruitment, which suggest that warm spring conditions enhance the survival of early larvae, but high temperatures in late
summer and autumn are associated with poor feeding conditions for young-of-year pollock and reduced recruitment in the following
year. A statistical downscaling approach is used to generate an ensemble of late summer temperature forecasts through 2050, based on
a range of IPCC climate projections. These forecasts are used to simulate future recruitment within an age-structured stock projection
model that accounts for density-dependent effects (stock–recruitment relationship), the estimated effects of temperature and pre-
dation, and associated uncertainties. On average, recruitment in 2040–2050 should expectedly decline by 32 –58% relative to a
random recruitment scenario, depending on assumptions about the temperature relationship, the magnitude of density-dependence,
and future changes in predator biomass. The approach illustrated here can be used to evaluate the performance of different manage-
ment strategies and provide long-term strategic advice to managers confronted with a rapidly changing climate.
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Introduction
Climate change will expectedly affect marine fish communities and
fisheries production through a variety of direct and indirect effects
of predicted changes in temperature, winds, salinity, stratification,
oxygen, pH, and other factors (Brander, 2010). Climate-related
changes have been documented in many ecosystems. Although
the mechanisms are often uncertain, changes to recruitment
success through changes in production or survival are believed
to be the key process driving these changes (Rijnsdorp et al.,
2009). Forecasting the effects of climate change on a fish popu-
lation requires (i) an understanding of the mechanisms linking
climate drivers to fish production (recruitment, growth, and dis-
tribution), (ii) forecasts of the key climate drivers, and (iii) a
stock projection model that captures the essential dynamics of
the population of interest (Hollowed et al., 2009). A critical
requirement of this approach is that the known or presumed
mechanisms affecting fish production can be quantified through
robust statistical relationships and that these relationships
remain valid under anticipated climate changes. Here the
approach outlined by Hollowed et al. (2009) is illustrated with a
case study by modelling the possible responses of walleye
pollock in the eastern Bering Sea to future climate variability.

Walleye pollock are an important component of the eastern
Bering Sea ecosystem and currently support the second largest
single-species fishery in the world, with landings for the eastern
Bering Sea alone ranging from 800 000 to 1.4 million tonnes
over the past three decades. Their geographic range extends
from Japan to the Bering Sea and as far south as northern
California. In the eastern Bering Sea, walleye pollock occupy a
central position in the foodweb and serve as a key forage species
for many upper trophic level species, including fish, seabirds,
and marine mammals (Aydin et al., 2007). In addition, cannibal-
ism is a major source of mortality for juvenile pollock. Adults
consume primarily age-0 pollock during autumn and winter on
the southeastern portion of the shelf and age-1 pollock during
summer, autumn, and winter to the northwest of the Pribilof
Islands (Dwyer et al., 1987), consistent with the observed distri-
bution of age-0 and age-1 pollock (Figure 1).

Spawning concentrations of walleye pollock in the eastern
Bering Sea, as inferred from the distribution of eggs, occur near
Bogoslof Island, north of Unimak Island and the Alaska
Peninsula, and around the Pribilof Islands (Figure 1; Bacheler
et al., 2010). Spawning takes place in February and March
around Bogoslof, in March and April north of Unimak Island,
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and from April to August around the Pribilof Islands (Bacheler
et al., 2010). However, little spawning has been evident around
Bogoslof Island in recent years, because of a very low spawning
biomass (Ianelli et al., 2009). By autumn of their first year,
pollock are primarily distributed over the middle shelf, whereas
age-1 pollock in the following summer primarily occupy the
outer shelf to the northwest of the Pribilof Islands (Figure 1).
Pollock also undertake northward and shoreward feeding
migrations during spring and summer (Kotwicki et al., 2005).
Therefore, pollock utilize large portions of the middle and outer
shelf; hence our efforts to identify environmental drivers of
recruitment will focus on this area, in particular the middle-shelf
region, which is important for age-0 pollock at a potentially criti-
cal stage in their early life (Hunt et al., 2011).

Based on previous studies (as reviewed in Mueter et al., 2006) and
recent results from the Bering Sea Integrated Ecosystem Research
Program (Hunt et al., 2011), conditions affecting recruitment of
walleye pollock include: (i) ice and temperature conditions at
the time of hatching, which determine early feeding conditions;
(ii) summer stratification over the shelf during the first summer
(age 0), which affects feeding conditions of late larval stages, as well
as vulnerability to predation; (iii) the abundance and distribution
of potential predators, including predation of adult pollock, arrow-
tooth flounder, and other predators on age-0 and age-1 pollock.
Moreover, the magnitude of predation may be affected by the
spatial overlap between larval or juvenile pollock and their predators,
including adult walleye pollock (Wyllie-Echeverria, 1996; Wespestad
et al., 2000; Mueter et al., 2006).

Our current understanding of the drivers of walleye pollock
recruitment in the eastern Bering Sea is based on a modified
version of the oscillating control hypothesis (OCH) originally pro-
posed by Hunt et al. (2002) and recently revised based on new
findings (Hunt et al., 2011). The OCH predicted that pollock
recruitment should be greatest in warm years when ice retreats
early and a late bloom occurs in thermally stratified water. These
conditions favour the pelagic community, because primary pro-
duction is consumed within the surface layer by zooplankton
that serve as prey for larval walleye pollock. Although this predic-
tion is supported by high survival of walleye pollock larvae from
hatching to summer during the most recent warm period from
2002 to 2005, these years failed to produce large, lipid-rich zoo-
plankton, such as Calanus, which provide important food for
walleye pollock during late summer and autumn (Coyle et al.,
2011). Consequently, larval pollock during these warm years had
low energy densities in autumn and may have experienced low
overwinter survival, because of increased predation or starvation
(Moss et al., 2009). Therefore conditions in late summer and
autumn may be critical to the overall survival of pollock from
spawning to recruitment at age 1.

In this study, we build on these observations to develop an
empirical relationship between late summer environmental con-
ditions and walleye pollock survival from age 0 to age 1. This
relationship is used within a simplified stock projection model
to forecast recruitment of walleye pollock over the next 40 years.
Our goal is to provide projections of future recruitment and abun-
dance under different warming scenarios and under a plausible

Figure 1. Distribution of pollock at various life stages, including main concentrations of eggs collected by NOAA’s FOCI programme (Bacheler
et al., 2010), smoothed distribution of age-0 walleye pollock in autumn from Bering-Aleutian Salmon International Survey (BASIS) research
programme, smoothed distribution of age-1 (80–199 mm), and age 3+ walleye pollock (≥300 mm) during summer averaged over 1982–2009
NMFS bottom-trawl surveys.

Expected declines in recruitment of walleye pollock in the eastern Bering Sea 1285

 at U
niversity of W

ashington on M
arch 9, 2014

http://icesjm
s.oxfordjournals.org/

D
ow

nloaded from
 

http://icesjms.oxfordjournals.org/
http://icesjms.oxfordjournals.org/


harvest scenario. Major sources of uncertainty in climate projec-
tions and in the estimated environmental relationships are
accounted for to characterize the full range of likely population
trajectories under the selected harvest scenario. We first examine
the empirical evidence of the proposed recruitment mechanisms
to develop a robust functional relationship between recruitment
of walleye pollock in the eastern Bering Sea and key climate vari-
ables. A statistical downscaling approach is then used to forecast an
ensemble of likely trajectories (time-series) of these key variables
through 2050. These time-series, in turn, are used to generate
recruitment trajectories, which are input into the stock projection
model to examine likely responses of walleye pollock to climate-
driven changes in recruitment, as well as to possible changes in
predation from arrowtooth flounder (Figure 2).

Methods
Based on our current understanding of walleye pollock recruit-
ment, a conceptual model of the most important factors determin-
ing the survival of early gadid stages, from spawning through
recruitment at age 1, was developed, assuming that recruitment

variability occurs primarily at the larval and early juvenile stages.
Suitable dataseries for modelling the relationships between poten-
tial explanatory variables and survival of walleye pollock were
selected to test the hypothesized mechanisms. Explanatory vari-
ables included timing of sea ice retreat and a spring transition
index to capture conditions during the early larval stage;
summer wind-mixing, late summer sea surface temperature
(SST), and late summer water column stability to capture environ-
mental conditions during the late larval stage; and an index of pre-
dation pressure on juvenile walleye pollock to estimate effects of
the major predators, including cannibalism, on juvenile survival
(Table 1).

Modelling stock–recruitment residuals
Because there is strong evidence of density-dependence in walleye
pollock, residuals from a stock–recruitment (S–R) relationship
were used as the primary response variable to quantify variability
in survival. This index, also referred to as log-survival, removes the
impact of spawning biomass on recruitment and should more
accurately reflect the influence of environmental variability on

Figure 2. Flow chart of modelling and projection approach. Rectangles denote the main state variables of projection model (2009–2050),
beginning with 2009 numbers-at-age (Na); long-dashed ovals denote the fixed input parameters (Ft is the annual fishing mortality based on the
harvest control rule described in the text). Rounded rectangles denote inputs for the statistical regression model to generate future
recruitment; short-dashed lines denote main stochastic elements generated by random draws from an ensemble of climate projections (Ei) or
from a specified distribution (1t). Shaded boxes denote quantities tracked and summarized in results.

Table 1. Pairwise Pearson’s correlation coefficients among independent variables used in analysis of walleye pollock recruitment with
significance levels, and loadings of variables on first four PCs.

Variable ICE ST SST Wind Strat PC 1 (41%) PC 2 (24%) PC 3 (18%) PC 4 (14%)

Ice retreat (ICE) 20.48 0.27 0.35 0.44
Spring transition (ST) 0.77** 20.59 0.09 0.11 0.24
Summer SST (SST) 20.37** 20.61** 0.54 0.15 0.21 0.40
Summer wind (Wind) 20.19 20.20 0.24 0.17 20.65 0.12 0.61
Stratification (Str) 20.03 20.33* 0.59** 20.32* 0.33 0.66 0.19 0.17
Predation (P) 0.04 20.06 0.07 0.12 20.04 0.04 20.21 0.87 20.43

Loadings larger than 0.4 are emboldened.
*p , 0.1.
**p , 0.05.
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recruitment. The S–R relationship was estimated for year classes
1963–2008 within the 2009 age-structured assessment model
(Ianelli et al., 2009), using the following parametrization of the
Ricker model:

Rt =
SSBt−1

Ø0
ea(1−SSBt−1/B0)e1t , (1)

where Rt is the recruitment at age 1 in year t at a given level of
female spawning-stock biomass (SSB) and e1t is a multiplicative
error term. Parameters of the relationship were estimated to be
a ¼ 2.084, Ø0 ¼ 0.2631, and B0 ¼ 4934 (Ianelli et al., 2009).
Although age-1 recruitment in the assessment model was esti-
mated through 2008, relative year-class strength may be modified
after the early juvenile stage, hence the estimate of the 2008 year
class was deemed unreliable for this analysis.

Because of the large number of explanatory variables relative to
the length of the available time-series and because of potential
confounding among the variables, a principal components analysis
(PCA) was used to reduce the number of explanatory variables to a
smaller number of independent variables (PCs). To model recruit-
ment or survival as a function of these PCs or as a function of
individual variables, a generalized additive modelling approach
(GAM), was used in the exploratory stages (Wood, 2006) and a
general linear modelling approach was used for selecting the
final model and for quantifying uncertainty for the projections.
Therefore, S–R residuals (1t) from Equation (1) were modelled
as a function of one or more environmental variables acting in
year t 2 1 (Xi,t21, i ¼ 1, 2, . . .), using an additive model with
non-parametric smooth functions ( fi) of the explanatory variables:

1t = b
′

0 + f1(X1,t−1) + f2(X2,t−1) + · · · + v′t .

Potential interactions between the explanatory variables were
also explored by fitting smooth functions (¼smooth surfaces) of
two environmental variables [e.g. f(X1, X2)]. These interaction
terms did not improve the models significantly and they were
not considered further. The degree of smoothing was determined
through generalized cross-validation (Wood, 2006); for the final
models, smooth terms were replaced by linear or polynomial
terms with approximately the same degrees of freedom as the
estimated smooth terms:

1t = b0 + b1X1,t−1 + b2X2,t−1 + · · · + vt, (2)

where the residuals n′t or nt are assumed to follow a normal distri-
bution with variance s2

v , b0 and b′
0 the intercepts, b1 and b2 the

slope parameters, and the Xi terms may be a quadratic or other
power transformation of the measured variables. Residuals were
tested for serial dependence and, if appropriate, residual variability
was modelled as a first-order autoregressive process. The small
sample or corrected Akaike Information Criterion (AICc;
Hurvich and Tsai, 1989) was used to identify the most parsimo-
nious model for predicting recruitment. The estimated level of
uncertainty in the identified relationships was incorporated
in the projections as described below to characterize uncertainty
in future population trajectories.

Modelling recruitment
As an alternative to modelling S–R residuals estimated within the
stock assessment model as a function of environmental variables,

recruitment estimates from the assessment were used in a “post-
assessment” analysis as response variable in a generalized Ricker
model (Quinn and Deriso, 1999). The linear form of this model
describes log-transformed recruitment as a function of spawning
biomass and environmental variables as follows:

log(Rt) = a+ b SSBt−1 +
∑

i

giXi,t−1 + log(SSBt−1) + 1t, (3)

where a and b are the productivity and carrying capacity par-
ameters of the Ricker model, respectively, the Xi are one or
more covariates acting on the egg and larval stages of walleye
pollock before year t, the gi are the corresponding regression coef-
ficients, and 1t are either independent, normally distributed
residuals, or follow a first-order autoregressive process. The
second SSB term was included in the model as an offset without
a coefficient. In the exploratory stage, we also fitted semi-
parametric models with a liner term for SSB and smooth terms
for the covariates Xi.

Data sources
Long-term indices of environmental variability of potential impor-
tance to walleye pollock were constructed from various sources.
Temperature indices were based on monthly extended recon-
structed SSTs (ERSSTv3; Smith et al., 2008), which are interpolated
values on a 28 latitude × 28 longitude grid and were averaged over
the southeast Bering Sea shelf inshore of the shelf break and extend-
ing to 618N for this analysis. Monthly ERSST data were used to
develop two indices of temperature conditions: a spring transition
index related to the timing of the non-ice-associated spring phyto-
plankton bloom and a late summer SST index. The spring transition
index was constructed by interpolating between monthly mean
shelf temperatures (assumed to reflect temperatures on the 15th
of each month) using a cubic spline and estimating the day of the
year when smoothed temperatures first exceeded 48C. As an index
of late summer upper layer temperature conditions, the monthly
ERSSTs were averaged over the southeast Bering Sea shelf from
July 1 to September 30.

An index of the timing of sea ice retreat (ICE) for the period
1972–2003 was based on Palmer (2003), as described in Mueter
et al. (2006), and was extended through 2008 using a regression-
based proxy. The original index was defined as the International
Organization for Standardization (ISO) week when average ice
concentration in the National Marine Fisheries Survey (NMFS)
area first drops below 20%, where ice concentrations were
obtained from digital ice charts provided by the Arctic
Climatology Project, National Ice Center, NOAA (http://www.
natice.noaa.gov). Predicted values of the index for 2004–2008
were obtained from a multiple linear regression of the original
index on mean April air temperatures at St Paul airport
(57.158N 170.228W), mean April–May SST (ERSSTv3 averaged
over the southeast Bering Sea shelf as described above), and the
mean February through April north–south windspeed component
at 10 m height near 56.28N 168.758W from the NCEP reanalysis
(Kalnay et al., 1996). The best-fit linear regression explained
90% of the variability in the observed ice retreat and predicted
values were obtained as follows:

ICE = 19.196 − 1.672 × SST − 7.020 × v − 2.346 × v2 − 3.329

× airT − 2.504 × airT2 − 2.187 × airT3,
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where SST, airT, and v are the SST index, air temperature index,
and N–S winds, respectively, as described above. The best
regression model was determined by first finding the additive
model with smooth terms for each variable that resulted in the
best leave-one-out predictions (Wood, 2006), then substituting
quadratic and cubic polynomial terms for smooth terms that
had �2 and 3 degrees of freedom, respectively. The parametric
fit was almost identical with the additive smooth fit and was
chosen for the analysis to simplify the computation of predicted
values and to enhance transparency.

To capture summer stratification, two alternative approaches
were used. Data from a mooring at station M2 on the middle
shelf for 1996–2007 (Stabeno et al., 2001, 2007) were used to
compute an index of water column stability during late summer.
The stability index was computed as the negative depth-integrated
potential energy (J m22), or the energy required to mix the water
column, following Simpson et al. (1977). Daily average tempera-
ture and salinity profiles at M2 were estimated from discrete
depth measurements by linearly interpolating between consecutive
depths before computing the stability index. Daily indices of stab-
ility were averaged from 1 July through 30 September. Because the
measured time-series of stratification was much shorter than the
recruitment series, a proxy for water column stability based on a
one-dimensional model of mixed-layer depth was used to extend
the time-series back to 1963 (C. Ladd, NOAA-PMEL, Seattle,
pers. comm.). To quantify predation pressure, the only biotic vari-
able in our analyses, diet compositions and consumption estimates
from the early 1990s (Aydin et al., 2007) were used to construct an
index of “potential predation pressure”. The major sources of mor-
tality for juvenile walleye pollock in the early 1990s, accounting for
well more than 50% of the overall mortality, were adult walleye
pollock, arrowtooth flounder, and flathead sole (Aydin et al.,
2007). Therefore, an index of predation in year t (predt) was
computed as follows:

predt =
∑3

i=1

Q

B

( )
i

× Bi,t × pi,

where (Q/B)i is the consumption rate (consumption Q per unit
biomass B) of predator i, Bi,t the estimated total biomass of pred-
ator i in year t (obtained from NPFMC, 2009), and pi the average
proportion of juvenile pollock in the diet of predator i. This
assumes that both the consumption rate and the proportion of
pollock in a predator diet remain the same as those estimated
for the early 1990s. Clearly, both assumptions may be violated,
because the consumption rate is a function of the age structure
of the population and diet composition varies with the relative
abundance of different prey, the spatial overlap of predators and
prey, and other factors that affect prey availability. Therefore,
potential effects of changes in spatial distribution of predators
on pollock recruitment, as quantified by the centre of gravity,
were examined, but were not significant and are not considered
further here. The index of predation was computed across the
three major predators from 1977 to 2008, when biomass estimates
for all three species were available, and it was strongly correlated
with the biomass of walleye pollock over this period (r ¼ 0.91),
because adult walleye pollock are the main predators on juvenile
pollock because of their large biomass. Therefore, we also corre-
lated pollock S–R residuals with the biomasses of each individual
predator to confirm the negative relationship between the biomass

of each predator and survival of walleye pollock from spawning to
recruitment. Only arrowtooth flounder and flathead sole were
included in the generalized Ricker model [Equation (3)],
because cannibalism by walleye pollock is implicitly captured by
the density-dependent term in this formulation (effect of SSB on
log-recruitment).

Regional temperature forecasts
To predict future recruitment of walleye pollock from global
climate scenarios, regional forecasts of key environmental variables
that drive recruitment variability of walleye pollock in the eastern
Bering Sea are needed (Hollowed et al., 2009). A statistical down-
scaling approach was employed to forecast these variables, in par-
ticular summer SST over the shelf, from IPCC model projections.
Because there are large uncertainties about any climate projection,
82 climate scenarios were considered to reflect the range of uncer-
tainty in outcomes. Plausible future temperature scenarios to
characterize the range of uncertainty were selected, based on a
subset of nine IPCC models that performed best in capturing his-
torical climate variability of the North Pacific in their 20th century
hindcast simulations (Overland and Wang, 2007). It is assumed
that the models that can replicate the observed spatial and tem-
poral characteristics of the Pacific Decadal Oscillation are apt to
be those that better handle the atmospheric forcing, air–sea inter-
actions, and upper-ocean circulations of the North Pacific, includ-
ing the Bering Sea, and that these models are therefore more
reliable for simulations for the 21st century. Conversely, the evalu-
ation of model skill is hampered by the existence of only one realiz-
ation of the past climate and, therefore, it seems sensible to retain a
relatively large number of individual models for producing a
meaningful ensemble mean and quantifying future uncertainties.
For the nine models chosen, 21st century projections with the
low (B1), intermediate (A1B), and high (A2) CO2 emissions scen-
arios were considered. All three scenarios were evaluated, because
they span a wide range of simulated future climate forcing of the
Bering Sea. In our use of IPCC climate model output, we have
essentially followed the “best practices” outlined by Overland
et al. (in press).

Stock projections
Future recruitment series for walleye pollock were simulated under
different climate scenarios and were used to drive a population
dynamics model to explore the effects of climate variability on
future population trajectories (Figure 2). Walleye pollock popu-
lation numbers, biomass, and catches through 2050 were projected
starting with the 2009 numbers-at-age as estimated in the
most recent stock assessment (Ianelli et al., 2009). To convert
numbers to biomass, weights-at-age for all future years were
assumed equal to the 1999–2008 observed average. Other par-
ameter values for the projections were set equal to the values esti-
mated by or used in Ianelli et al. (2009), including maturity-at-age,
selectivity-at-age, and natural mortality. Projections used standard
population dynamics equations as described in Ianelli et al. (2009)
and a harvest control rule similar to the Tier 3 control rule used for
many groundfish species off Alaska (NPFMC, 2002), but with an
annual cap on total catches of 1.5 × 106 t. This cap is close to
recent maximum catches that have been achieved under the
regulatory cap of 2 × 106 t on total groundfish removals from
the eastern Bering Sea, as specified in the Fishery Management
Plan (NPFMC, 2002).

1288 F. J. Mueter et al.
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Because our focus was on exploring the effects of future climate
changes on recruitment, all population parameters except recruit-
ment were fixed in the simulations. This included reference points
used in the harvest control rule, which are the unfished level of SSB
(B100%, the projected spawning biomass under no fishing and
assuming average recruitment based on the 1977–2008 period)
and the corresponding fishing mortality rate (F40%) that would
reduce spawning biomass to 40% of the unfished biomass
(B40%). Under the assumed harvest control rule, the stock is
fished at F40% if current biomass (B) is larger than B40% and
fishing is reduced linearly if the biomass declines below B40%.
Moreover, F is set to zero if the biomass declines below 20% of
the unfished biomass, as a precautionary measure that was
implemented to protect the prey base for endangered Steller sea
lions (Eumetopias jubatus).

Recruitment at age 1 was simulated for each year of the projec-
tions using one of the three general approaches:

(i) Random stock–recruitment residuals: As a control and for
comparisons with scenarios that include environmental
effects on recruitment, we generated future recruitment
series by randomly drawing values from the observed S–R
residuals for brood years 1977–2007 [1t in Equation (1)]
and calculating recruitment in year t according to Equation
(1).

(ii) Simulated stock–recruitment residuals (type 1 model): Future
S–R residuals under a given climate scenario were simulated
from the AICc best model(s) for describing the climate–
recruitment relationship [Equation (2)]. Values for 1t in
Equation (2) (1∗t ) were simulated by accounting for the full
prediction uncertainty (i.e. parameter uncertainty plus
residual uncertainty):

1∗t = b0 + b1X1,t−1 + b2X2,t−1 + · · · + tdf

���������
s2
b + s2

v

√
,

where tdf is drawn from a Student’s t-distribution with
degrees of freedom equal to residual degrees of freedom of
the best environmental model, s2

b is the variance of the pre-
dicted value at the given level of the environmental variables,
and s2

v is the residual variance.

(iii) Simulated recruitment from the generalized Ricker model (type 2):
Future recruitments were simulated from a lognormal
distribution with predicted means and variances estimated
from the AICc best model(s) of the form described in
Equation (3).

The AICc best models in both cases (types 1 and 2) included pre-
dation terms. For type 1 models, the predation index was annually
updated in the projections to account for changes in walleye
pollock biomass, whereas arrowtooth flounder biomass and flat-
head sole biomass were held constant at their 2009 values.
Under type 2 models, two future scenarios were explored for
arrowtooth flounder, assuming either a constant biomass at the
2009 value for all future years (model 2a) or a continuing linear
increase in arrowtooth flounder biomass at the rate observed
between 1991 and 2009 (model 2b).

Results
Walleye pollock recruitment has undergone large fluctuations over
recent decades (Figure 3). Large year classes tend to occur every 4–6

years and can cause considerable fluctuations in biomass. Similar to
other fish species in the Bering Sea (Mueter et al., 2007), strong
recruitment after the 1976/1977 climate regime shift resulted in
a strong increase in biomass. The average estimated recruitment
at age 1 was similar before (18.3 billion) and following the
regime shift (22.3 billion, t-test on log-transformed abundances:
t ¼ 20.56, p ¼ 0.58). However, several strong year classes origi-
nated after the regime shift starting in 1977, followed by a signifi-
cant decrease in average log-transformed recruitment (linear trend
over time: t ¼ 22.24, p ¼ 0.033). In particular, there has been a

Figure 3. Time-series of walleye pollock recruitment (bars) and
biomass (solid line) in the eastern Bering Sea, 1963–2009, based on
most recent stock assessment estimates (Ianelli et al., 2009) and
anomaly time-series of environmental variables used in the analysis.
The vertical dashed line in the top panel denotes 1976/1977 climate
regime shift. Thin line and thin dashed lines in the top panel indicate
estimated 80th percentile of recruitment from 1977 to 2007, with
95% coverage interval based on a quantile regression of
log-transformed recruitment over time (t ¼ 2.57, p ¼ 0.015).
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considerable decrease in the strength of the largest year classes. For
example, a quantile regression reveals a significant decrease in the
80th percentile of log-transformed recruitment over time
(Figure 3, top panel).

Environmental variables were characterized by high interann-
ual variability over most of the time-series, with a few multiyear
periods of consistent cold (1971–1976) or warm (2001–2005)
conditions (Figure 3). As expected, temperature, ice, and spring
transition indices were correlated with each other and, to a
lesser extent, with the stratification index (Table 1). Importantly,
the predation index was not correlated with any of the environ-
mental indices.

Correlations between environmental variables were used to
reduce the number of variables to four significant PCs, which
accounted for 97% of the overall variability (Table 1). The first
PC contrasts warm years characterized by little ice, an early
spring transition, and warm summer SST with cold years. Warm
years tend also to be strongly stratified (positive loading for strati-
fication index). However, variability in stratification and wind-
mixing are primarily captured by PC 2, which contrasts years
characterized by weak wind-mixing and strong stratification (posi-
tive values of PC 2) with years that have strong wind-mixing and
weak stratification (negative PC 2). The third PC primarily reflects
predation with weak loadings on all the environmental variables,
whereas PC 4 in its positive phase was associated with unusual
years characterized by both a late ice retreat and warm summers
with strong wind-mixing.

Recruitment modelling
For models of type 1, the best overall model based on AICc

explained much of the variability in S–R residuals (adjusted
r2 ¼ 0.55; Figure 4) as a function of PC 1 (smooth fit with �2
d.f., F ¼ 5.36, p ¼ 0.0088) and PC 3 (linear term, F ¼ 25.5, p ,

0.001). Neither PC 2 nor PC 4 was significantly related to variabil-
ity in S–R residuals, and there was no significant interaction
between PC 1 and any of the other PCs. Therefore, variability in
survival appears to be most strongly related to overall temperature
variability (PC 1) and predation (PC 3), and survival anomalies
were highest when temperatures were low to intermediate and
when the predation index was low to average (Figure 4). Because

of strong correlations between the variables (Table 1), the relative
effects of spring and summer conditions on survival cannot be
separated statistically. However, GAMs of S–R residuals as a func-
tion of individual variables suggest that survival was significantly
related to late summer SST (3 d.f., adjusted r2 ¼ 0.24, F ¼ 4.46,
p ¼ 0.0082), but not to the timing of the ice retreat (p ¼ 0.775)
or to the spring transition index (p ¼ 0.382). Therefore, late
summer SST appears to be more important in determining survi-
val to recruitment than spring ice and temperature conditions.

To predict future survival anomalies (S–R residuals) from
available climate forecasts, the model was simplified further.
First, we replaced PC 1 in the model with average July–
September SSTs, because ice conditions and the spring transition
index were not significant individually and because ice retreat is
difficult to forecast from current climate models. Second, we
replaced the smooth terms with a quadratic term for SST and a
linear term for predation to fit a linear regression model. The
resulting model provided a reasonable fit (Figure 5, adjusted
r2 ¼ 0.46, F ¼ 9.51, p , 0.001) and will be referred to as model
1 in the projections. Further model comparisons confirmed that
none of the other variables improved the model significantly
when added individually (AICc always increased) and that there
was no significant interaction between SST and predation (differ-
ence in AICc values: DAICc ¼ 4.5). Residuals from the best model
were not significantly autocorrelated (Durbin–Watson test
statistic ¼ 1.82, p ¼ 0.243) and were close to normally distributed
(Shapiro–Wilk test for normality, W ¼ 0.968, p ¼ 0.471).
Although walleye pollock dominated the predation term in the
model, the biomass of each individual predator had a negative
effect on S–R residuals at the 90% significance level (walleye
pollock: p , 0.001; arrowtooth flounder: p ¼ 0.014; flathead
sole: p ¼ 0.065).

An alternative model of type 2, using recruitment and spawner
biomass estimates from the stock assessment to fit a generalized
Ricker model, suggested similar significant effects of late
summer temperatures on log-transformed recruitment. An
exploratory model with a smooth term for summer SST suggested
that (log-) recruitment was relatively high at lower SSTs, dropped
steeply between �9.2 and 9.88C and was low at higher tempera-
tures. We therefore replaced the smooth term for SST with a
threshold at 9.48C, where the threshold value was estimated
within the model (Figure 5). The biomass of arrowtooth flounder
was related significantly and negatively to pollock recruitment
(simple linear regression, t ¼ 22.115, p ¼ 0.043), but the effect
was not significant when arrowtooth flounder was included in
the generalized Ricker model (p ¼ 0.106). Nevertheless, a negative
coefficient is consistent with a predation effect and with the model
described above; hence, arrowtooth flounder biomass was
included in the model to examine the possible effects of different
future arrowtooth trajectories on pollock recruitment (Figure 5,
adjusted r2 ¼ 0.56, F ¼ 13.9, p , 0.001). This model is referred
to as model 2 in the projections.

Projections
Ensemble predictions of future trajectories for average July–
September SST under three emissions scenarios display very
high variability in individual trajectories and a gradual increase
in the ensemble mean through 2050 (Figure 6). On average, late
summer SSTs in the eastern Bering Sea are expected to increase
by �1 8C under IPCC emissions scenarios A2 and B1 and a some-
what larger increase under scenario A1B. The larger increase in the

Figure 4. Predicted stock–recruitment residuals for walleye pollock
in the eastern Bering Sea as a function of the first and the third PCs
from a PCA of six environmental indicators. PC 1 reflects average
temperature conditions, whereas PC 3 reflects predation pressure.
Other PCs were not significant. Note that temperature and ice
conditions in spring are confounded with summer temperature
conditions and their apparent effects on recruitment cannot be
separated statistically.
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A1B scenario can be attributed to slightly faster growth in global
temperatures relative to the higher emissions A2 scenario until
approximately �2050 (at which point temperatures under the
A2 scenario begin to increase at a greater rate) and perhaps to a
regional effect.

Simulated population trajectories of walleye pollock were
highly variable, because of large variability in recruitment resulting
from high variability in future SST trajectories and large uncer-
tainties in the estimated effects of SST and predation (Figure 7).
Under model 1, average recruitment across the three emissions
scenarios is expected to decline over the next 40 years by �44%
relative to the random recruitment scenario (based on 1977–
2007 mean, see Figures 7 and 8). However, a 90% simulation
envelope includes the 1977–2007 mean, implying approximately
a 13% probability that average recruitment will be higher than
the 1977–2007 mean in 2050. Similarly, spawning biomass and
catches are expected to decline substantially with less than a
7.5% probability that spawning biomass will exceed B40% in
2050. Many of the catch trajectories resulted in zero catches
during later years under model 1, because of the spawning
biomass frequently falling below the B20% threshold (Figure 7).

The expected distribution of recruitment, spawner biomass,
and catches are expected to decrease relative to the random
recruitment scenario under both models (types 1 and 2) and

with (2b) or without (2a) a continuing increase in arrowtooth
flounder biomass (Figure 8). The simulated values had a
similar distribution under all three emission scenarios, with
slightly larger declines under scenario A1B. Declines under
model 2a were moderate, because of a strong compensatory
response in recruitment implied by the generalized Ricker
model (i.e. recruitment increases considerably, on average, at
lower levels of SSB). If arrowtooth flounder biomass continues
to increase, as assumed under model 2b, recruitment, spawner
biomass, and catches are expected to decrease substantially rela-
tive to the random recruitment scenario and relative to the
model that assumes that arrowtooth flounder biomass remains
at the current level (Figure 8).

Discussion
Empirical relationships between SSTs on the southeastern Bering
Sea shelf during late summer and recruitment success of walleye
pollock suggest that recruitment is reduced if regional average
surface temperatures exceed �9.48C. The implications of these
findings are that increasing temperatures in the eastern Bering
Sea, as predicted by IPCC climate models under a range of scen-
arios (Figure 6), will likely reduce future recruitment, biomass,
and harvests of walleye pollock (Figure 8). However, large

Figure 5. Estimated effects of summer (July –September) SST and combined predation by walleye pollock, arrowtooth flounder, and flathead
sole on survival anomalies (stock–recruitment residuals) of walleye pollock (top panels) and estimated effects of summer SST and arrowtooth
flounder biomass on log-transformed recruitment (density-dependent effect of spawning biomass not illustrated).
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uncertainties in SST projections and in the estimated relationships
result in large uncertainties in future population trajectories.
Under the assumed harvest scenario, there is large overlap in simu-
lated trajectories between the random recruitment scenario and all
the temperature-dependent scenarios, but under all models, there
is a very high probability that future biomass and catches will be
lower than in the past. Simulations under a variety of plausible
future management scenarios result in similar conclusions
(Ianelli et al., 2011).

Environmental effects on recruitment
Our results are consistent with recent findings that unusually
warm conditions during the period from 2002 to 2005 resulted
in poor feeding conditions and low energy content of age-0
pollock in autumn months (Coyle et al., 2011; Hunt et al.,
2011). Despite large abundances of age-0 pollock in surface
waters during those years (Moss et al., 2009), the survival of the
2002–2005 year classes was low and resulted in very poor recruit-
ment (Figure 3), presumably as a consequence of reduced

Figure 6. Ensemble predictions for late summer (July–September) SST through 2050 based on three IPCC climate scenarios.
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overwinter survival from age 0 to age 1 (Hunt et al., 2011). Poor
feeding conditions during the warm period resulted from a
lack of large Calanus copepods, euphausiids (in particular
Thysanoessa raschii), and other large zooplankton species that
are important prey for larval and early juvenile pollock. The mech-
anisms that caused low abundances of large Calanus copepods and
other large zooplankton are understood poorly and may relate to a
mismatch between the timing of the spring bloom and the prey
needs of copepod nauplii (Baier and Napp, 2003; Hunt et al.,
2011), or to a reduction in post-bloom production resulting
from intense stratification and reduced nutrient supply into the
surface layer (Coyle et al., 2008, 2011; Hunt et al., 2008). The
latter hypothesis implies that reduced summer productivity
limits food availability, growth, and subsequent survival of large
zooplankton and may cause them to descend into deeper waters
earlier in the season compared with cold years. Our results
support the importance of late summer and autumn conditions,
but strong confounding between spring and summer temperature
conditions (Table 1) do not allow us to separate these
non-exclusive hypotheses statistically.

Several studies provide evidence of the importance of upper-
layer temperatures and water-column stratification, particularly
during late summer and autumn, for the survival of young-of-year
walleye pollock. There was a very strong and negative correlation
between a measure of water column stratification at the M2
mooring site during July–September and pollock survival
(1996–2007, r ¼ 20.86, p , 0.001; Coyle et al., 2011), although

this relationship became non-significant when the extended,
model-based index of water-column stratification (Figure 3) was
used as a proxy for conditions at M2 (FJM, unpublished data).
This may indicate that the index is a poor measure of stratification
in earlier years, that the importance of stratification has increased
in recent years, or that the relationship is a result of other factors
associated with stratification. Strong stratification during warm
years generally implies a shallower thermocline and a thinner
upper layer. This may result in food limitations, because of the
reduction in available habitat and increased energetic demands
because of warmer temperatures (Ciannelli et al., 1998).
Similarly, during years with warm temperatures in autumn,
walleye pollock in the Gulf of Alaska may suffer from higher pre-
dation and limited food availability (Ciannelli et al., 2004).
Temperatures and stratification on the eastern Bering Sea shelf
are weakly correlated (Table 1) and warm years (e.g. 2000 and
2001) can have low stratification, whereas cold years, such as
2007, can have very high stratification (C. Ladd, pers. comm.),
providing some contrast between temperature and stratification.
Results from the PCA suggest, to the extent effects can be disen-
tangled, that temperature conditions (PC 1; Table 1) are more
important than stratification (PC 2) to pollock survival.

The finding that warm conditions in the eastern Bering Sea are
associated with poor survival contradicts earlier findings that
warmer years tend to produce strong year classes of walleye
pollock (Quinn and Niebauer, 1995; Hollowed et al., 2001;
Mueter et al., 2006). This apparent contradiction can be resolved

Figure 7. Distribution of simulated recruitment, spawning biomass, and annual catches for 2011–2050 under a model with no temperature
effect (i.e. random recruitment) and under a model incorporating SST and predation effects on recruitment (model 1). Thick lines indicate
means over 1000 simulated trajectories under random recruitment (solid line) and under model 1 (dashed line). Polygons denote simulation
envelopes such that 90% of simulated values fall within the envelope in any given year. Future SST trajectories for these simulations were
drawn at random from all the trajectories in Figure 6.
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by observing that warmer springs with an early ice retreat appear
to favour survival of early larvae (Hunt et al., 2011), but excessive
warm temperatures in the autumn result in poor overwinter sur-
vival, resulting in a dome-shaped relationship between pollock
survival and SST. The current analysis was limited to the post-
regime shift period when SSTs were near the “optimum” SST
range or on the descending limb of the hypothesized relationship
(Figure 5). However, a dome-shaped relationship is evident if the
full time-series of pollock recruitment (1963–2007) is plotted
against late summer SST (Figure 9 in Coyle et al., 2011).
Similarly, Pacific cod (Gadus macrocephalus), whose recruitment
is strongly correlated with that of walleye pollock in the eastern
Bering Sea, switched from a positive relationship between SST
and recruitment before the 1976/1977 regime shift to a negative
relationship after the regime shift (Mueter et al., 2009), when
average temperatures were higher.

The projections presented here assume that the mechanisms
that caused low recruitment during the recent warm period,
which were followed by a dramatic decline in pollock biomass,
will continue to operate into the future. Although such empirical
relationships frequently break down over time (Myers, 1998),
recent field observations, spanning a period of contrasting warm
and cold conditions, offer strong support for a decrease in recruit-
ment under very warm conditions (Hunt et al., 2011). This
support is based on a mechanistic understanding of variability
in prey conditions affecting pollock survival; hence, we believe
that the estimated SST effect offers a reasonable basis for simulat-
ing future recruitment variability, as long as the associated uncer-
tainties are taken into account.

Uncertainties in stock projections
In this study, we only considered uncertainty in future SST trajec-
tories and in the relationship between SST and recruitment as esti-
mated outside the assessment. Clearly, the population dynamics of
walleye pollock are highly uncertain and future improvements
should consider full uncertainty in the assessment and in the esti-
mated management parameters. Moreover, the estimation of SST
effects could be integrated within the assessment model for con-
sistency between the retrospective estimation and future projec-
tions. Additional uncertainties about the effect of SST on future
recruitment arise from extrapolating the estimated SST relation-
ship beyond the range of observed temperatures. Projections of
late summer SST used in this study exceed the maximum observed
value (10.48C) �29% of the time, with temperatures under some
scenarios exceeding 13.58C in individual years. It is assumed here
that recruitment is not further reduced when SST exceeds the
observed maximum (Figure 5), an assumption that is likely to
underestimate the true effect of climate warming on recruitment.
However, prey and/or pollock dynamics could change fundamen-
tally under continued warming, for example, through northward
shifts in the distribution of spawning and nursery areas. Such
adaptive responses cannot be predicted currently, but populations
may be particularly vulnerable during the periods of adaptation or
the rate of change may overwhelm the ability of species to adapt
(Brander, 2010), implying a need for additional precaution
under rapid climate change.

Additional uncertainties in the projections arise from the incor-
poration of density-dependent effects (including cannibalism) and
predation in models of recruitment. The stock–recruitment
relationship estimated within the stock assessment model implies
a moderate level of density-dependence (Ianelli et al., 2009). The
effect of density-dependence can be evaluated by comparing
changes in recruitment under models with and without density-
dependence and by comparing models with different levels of
density-dependence. The projections of Ianelli et al. (2011) pre-
dicted future (log-transformed) recruitment directly from SST,
without taking account of density-dependence or predation. This
is comparable with recruitment predictions from model 1, which
included density-dependence, if predation is fixed at the observed
mean. Results (not given) suggest relatively minor differences in
recruitment projections under this level of density-dependence.
In contrast, a generalized Ricker model fit to the assessment
output implies a higher level of density-dependence, resulting in
strong compensatory increases in recruitment at low levels of
SSB, thereby moderating the influence of declining SST on recruit-
ment (model 2a in Figure 8).

Figure 8. Boxplots of recruitment, spawner biomass, and catches as
observed in the past (1979–2008, Obs) and as projected into the
future (2041–2050 averages) using different models and climate
scenarios. Boxes labelled “Random” assume no climate effect on
recruitment (random draws from the observed values). Other boxes
illustrate distribution of projected values under three different
models to simulate temperature and predation effects on
recruitment (see text for model details) and under three different
IPCC emission scenarios. Dashed horizontal reference lines denote
the mean values from “Random” scenario, black bars denote the
median, boxes include central 50%, and whiskers include central 90%
of simulated values. Note that the implemented harvest control rule
limits catches to 1.5 × 106 t, hence median, upper quartile, and
upper whisker all coincide in some cases.
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Strong density-dependence in the generalized Ricker model
may be a consequence of within-cohort competition, within-
cohort cannibalism, and cannibalism by adult pollock.
Cannibalism is a major source of pollock mortality in the Bering
Sea (Dwyer et al., 1987; Livingston and Lang, 1996); it was
evident in the effect of the predation term in model 1 and was a
likely reason for the strong density-dependence in model
2. Predation by arrowtooth flounder, a major predator on juvenile
pollock (Aydin et al., 2007), also had a strong impact on future
pollock dynamics. Arrowtooth flounder predation is believed to
play a major role in regulating recruitment of walleye pollock in
the Gulf of Alaska (Bailey, 2000; Hollowed et al., 2000) and our
results suggest that a continued increase in arrowtooth flounder
biomass in the eastern Bering Sea could have a strong impact on
pollock recruitment (Figure 8).

Conclusions
Forecasts of the recruitment response of walleye pollock to future
climate variability can be used within a management-strategy
evaluation framework to assess alternative harvest scenarios and
to provide long-term strategic advice to managers who are con-
fronted with a rapidly changing environment (Ianelli et al.,
2011). This study only considered the effects of temperature and
major groundfish predators on recruitment as a first step in asses-
sing the effects of climate change on a major commercial species in
the Bering Sea. Efforts are currently underway as part of the BEST/
BSIERP research programme (www.bsierp.nprb.org) to develop an
end-to-end model of the eastern Bering Sea for predicting the
responses of a multispecies fish community to future climate
variability, but the model is not yet operational (K. Aydin,
NOAA-AFSC, Seattle, pers. comm.). In the near term, studies
such as this and Ianelli et al. (2011) in the Bering Sea and a
similar study in the Baltic Sea (ICES 2009; A. Gårdmark,
Swedish Board of Fisheries, pers. comm.) are likely to provide
the best assessment of climate effects on single species as a basis
for providing relevant management advice. These studies could
be extended to include other effects of climate change, such as
effects on growth and distribution, but are inadequate for captur-
ing multispecies interactions or adaptive responses to warming.
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